# Overview of Hydrogen Storage: Gas, Liquid and Solid

## **Gary Sandrock**

Detailee to DOE Headquarters
From Oak Ridge National Laboratories

DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science for Applications in Energy (MCMC-14) NIST Combinatorial Center November 5, 2008

National Laboratory

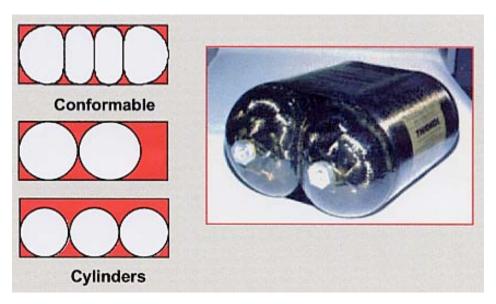
## **Hydrogen Fueled Vehicles**

- Fuel Cell and H<sub>2</sub> ICE-Electric Hybrid Vehicles have similar needs.
- Ideally use waste heat of FC or ICE (< 100°C)</li>
- Demonstration vehicles use mostly high pressure gas storage.



Ford Fuel Cell Car with 700 bar (70MPa) CG Storage - Powertech (BC Hydro of Canada)




Toyota Prius H<sub>2</sub>-ICE / Electric Hybrid - ECD Ovonic Hydride Storage

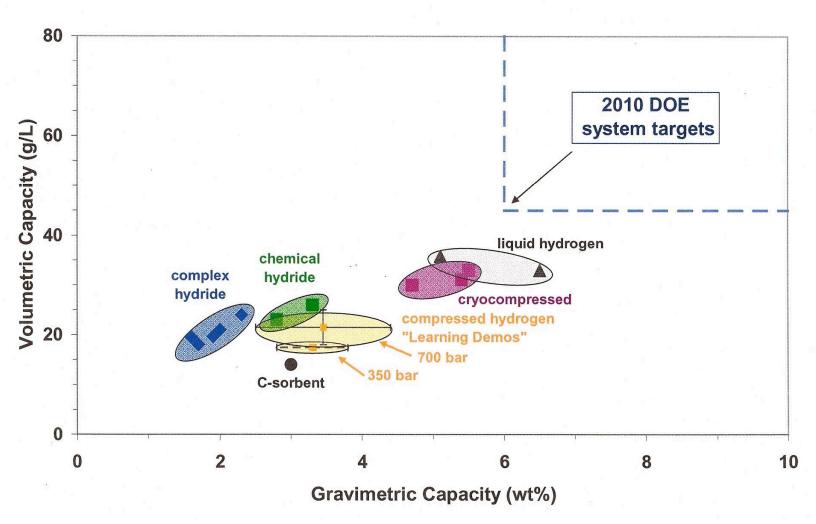
## Liquid

# The Three Principal Forms of Hydrogen Storage



Gas




**Solid** 





## Current System Status - 2008

## No technology meets targets



## SOME HYDROGEN STORAGE METHODS

#### 1. Gaseous hydrogen

- A. Steel tanks
- **B.** Composite tanks
- C. Cryogas
- D. Glass microspheres

#### 2. Liquid hydrogen

- A. Cryogenic
- B. NaBH<sub>4</sub> solutions
- C. Rechargeable organic liquids
- D. Anhydrous ammonia NH<sub>3</sub>

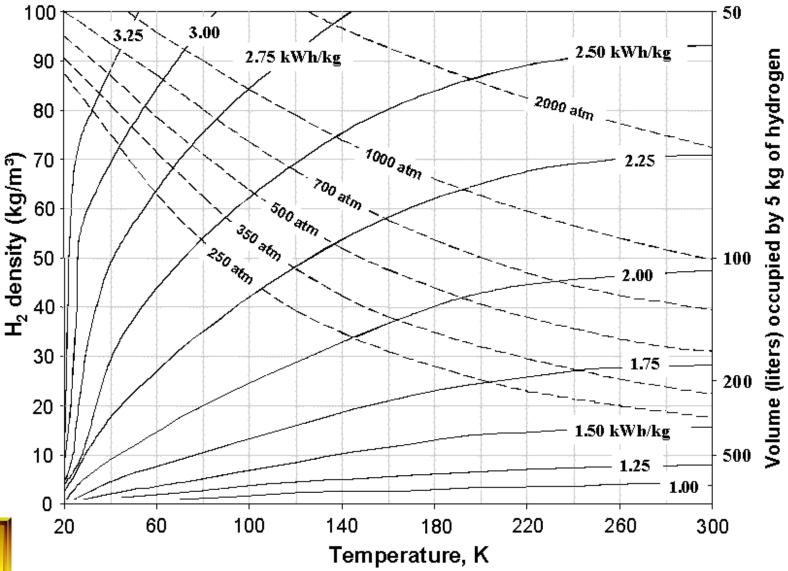
#### 3. Solid hydrogen

- A. Chemical hydrides (H<sub>2</sub>O-reactive)
  - a. Encapsulated NaH
  - b. LiH & MgH<sub>2</sub> slurries
  - c. CaH<sub>2</sub>, LiAlH<sub>4</sub>, etc
- **B.** Chemical hydrides (thermal)
  - a. Ammonia borane
  - b. Aluminum hydride
  - c. Misc. LE compounds
  - d. Nanomaterials (e.g., Si)
- C. Carbon & other HSA materials
  - a. Activated charcoals
  - b. Nanotubes
  - c. Graphite nanofibers
  - d. MOFs, Zeolites, etc.
  - e. Clathrate hydrates
  - f. Polymeric adsorbers
- D. Rechargeable metal hydrides
  - a. Alloys & intermetallics
  - b. Nanocrystalline
  - c. Complex



# High-pressure H<sub>2</sub>-storage in C-fiber-wrapped composite tanks

P = 35-70 MPa (350-700 bar)


#### Advantages:

- 1. Moderately low weight
- 2. Commercially available
- 3. Well engineered and safety tested
- 4. Code accepted in several countries to 350-700 bar
- 5. No internal heat exchange
- 6. Much prototype experience
- 7. May be usable for cryogas

#### **Disadvantages**:

- 1. High volume (cannot meet target)
- 2. Expensive (\$500-600/kg H)
- 3. Very high pressures mean high compression energy penalties
- 4. Rapid loss of H<sub>2</sub> in accident
- 5. Long-term materials uncertainties under cyclic or cold conditions
- 6. Ideal (cylindrical) shape difficult to conform to available space

## **Cryocompressed H<sub>2</sub> for Increased Density**



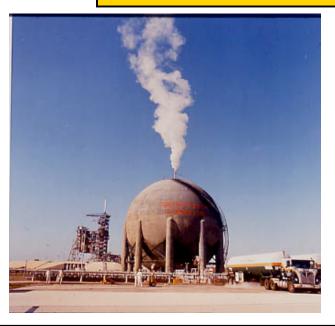


Aceves, Berry et al, LLNL, 2007

## SOME HYDROGEN STORAGE METHODS

#### 1. Gaseous hydrogen

- A. Steel tanks
- **B.** Composite tanks
- C. Cryogas
- D. Glass microspheres


#### 2. Liquid hydrogen

- A. Cryogenic
- B. NaBH<sub>4</sub> solutions
- C. Rechargeable organic liquids
- D. Anhydrous ammonia NH<sub>3</sub>

#### 3. Solid hydrogen

- A. Chemical hydrides (H<sub>2</sub>O-reactive)
  - a. Encapsulated NaH
  - b. LiH & MgH<sub>2</sub> slurries
  - c. CaH<sub>2</sub>, LiAlH<sub>4</sub>, etc
- B. Chemical hydrides (thermal)
  - a. Ammonia borane
  - b. Aluminum hydride
  - c. Misc. LE compounds
  - d. Nanomaterials (e.g., Si)
- C. Carbon & other HSA materials
  - a. Activated charcoals
  - b. Nanotubes
  - c. Graphite nanofibers
  - d. MOFs, Zeolites, etc.
  - e. Clathrate hydrates
  - f. Polymeric adsorbers
- D. Rechargeable metal hydrides
  - a. Alloys & intermetallics
  - b. Nanocrystalline
  - c. Complex

## Cryogenic Liquid Hydrogen - LH<sub>2</sub>



#### **Basic properties of LH<sub>2</sub>:**

Normal Boiling Point = 20.3K = -253°C

Density at NBP =  $70.8 \text{ kg/m}^3$ 

**Critical Pressure = 1.3 MPa (12.8 atm)** 

**Critical Temperature = 33.0K** 

#### **H-Capacities**:

H2 DensityTheoreticalSystemGravimetric, wt.%1005-7Volumetric, kg/m³70.830-35

#### **Disadvantages:**

- 1. 30-40% energy loss to produce liquid.
- 2. Cryogenic container needed.
- 3. Boiloff losses during dormancy.
- 4. Safety?
- 5. Too high tech for general public?

#### **Advantages**:

- 1. Low pressure.
- 2. Demonstrated on vehicles.
- 3. Favored by BMW.
- 4. Can be co-utilized as aircraft fuel.
- 5. Fair gravimetric capacity.

#### **R&D Needed:**

- 1. More efficient liquifaction (hydride compressors, magnetic & acoustic cooling, etc.)
- 2. Lower cost, better insulated containers.
- 3. Automated boiloff capture (e.g., via hydrides) and reliquifaction.

## Dehydrogenation/Hydrogenation of Organic Liquids

## **Example:**

## **Decalin** ⇔ **Napthaline**

**PM-catalyst** 

Theoretical H-Capacities:
Gravimetric = 7.3 wt.% H<sub>2</sub>
Volumetric = 37 kg H<sub>2</sub>/m<sup>3</sup>

$$C_{10}H_{18} \Leftrightarrow C_{10}H_8 + 5H_2$$

T<sub>dehvd</sub> ≈ 210°C

#### **Concept:**

- 1. Onboard catalytic dehydrogenation of organic liquid to provide H<sub>2</sub> gas.
- 2. Pump dehydrogenated product from vehicle tank for transport to central processing plant (simultaneously refilling tank with fresh H-rich liquid).
- 3. Rehydrogenate H-depleted liquid back to starting compound and return to filling station.

#### **R&D Needed:**

- 1. Search for organic systems that can be dehydrogenated at low T and produce useable H<sub>2</sub> pressures (i.e., have good thermodynamics).
- 2. Optimize dehydrogenation catalysts and onboard system.
- 3. Develop rehydrogenation process and infrastructure scenario.
- 4. Cost calculations.
- 5. Safety and toxicity studies.

Hodoshima, Arai, Saito: IJHE, 28 (2003) 197

## **Liquid Anhydrous Ammonia**

## **Thermal Cracking:**

#### **Theoretical H-Capacities:**

Gravimetric = 17.7 wt.%  $H_2$ Volumetric = 105 kg  $H_2/m^3$ 

#### **Concept**:

- 1. Onboard storage of liquid  $NH_3$  at < 25 bar.
- 2. Onboard catalytic cracking of vaporized NH<sub>3</sub> to provide N<sub>2</sub>-H<sub>2</sub> for FC.
- 3. Direct burning of NH<sub>3</sub> in an IC engine.

#### **Problems:**

- 1. Onboard dissociation system (for FC).
- 2. Residual NH<sub>3</sub> poisons PEMFC.
- 3. Toxicity/safety problem.

## $NH_3 \rightarrow 0.5N_2 + 1.5H_2$

 $T_d = 650-1000^{\circ}C$ 

**Ni-catalyst** 

#### **R&D Needed:**

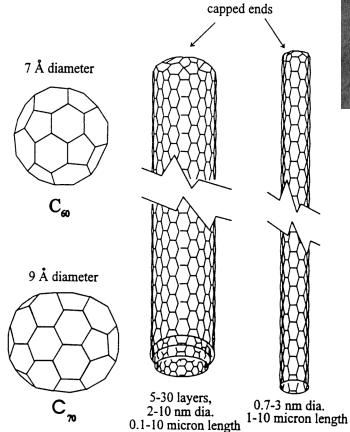
- 1. Develop high efficiency/low temp cracking catalysts and small, low-cost on-board NH<sub>3</sub> dissociators.
- 2. Develop thorough  $H_2$  purification system (<10 ppb residual  $NH_3$ ).
- 3. Need "fail-safe" onboard tank.
- 4. Need low-cost, C-free NH<sub>3</sub> production process.
- 5. Optimize the design of NH<sub>3</sub> ICEs.

G. Thomas, G. Parks: Potential Role of Ammonia in a Hydrogen Economy, DOE, Feb. 2006

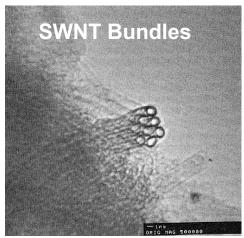
### SOME HYDROGEN STORAGE METHODS

#### 1. Gaseous hydrogen

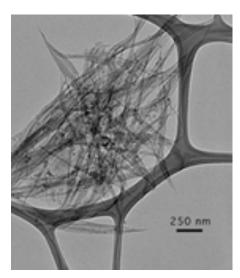
- A. Steel tanks
- **B.** Composite tanks
- C. Cryogas
- D. Glass microspheres


#### 2. Liquid hydrogen

- A. Cryogenic
- B. NaBH<sub>4</sub> solutions
- C. Rechargeable organic liquids
- D. Anhydrous ammonia NH<sub>3</sub>


#### 3. Solid hydrogen

- A. Chemical hydrides (H<sub>2</sub>O-reactive)
  - a. Encapsulated NaH
  - b. LiH & MgH<sub>2</sub> slurries
  - c. CaH<sub>2</sub>, LiAlH<sub>4</sub>, etc
- **B.** Chemical hydrides (thermal)
  - a. Ammonia borane
  - b. Aluminum hydride
  - c. Misc. LE compounds
  - d. Nanomaterials (e.g., Si)
- C. Carbon & other HSA materials
  - a. Activated charcoals
  - b. Nanotubes
  - c. Graphite nanofibers
  - d. MOFs, Zeolites, etc.
  - e. Clathrate hydrates
  - f. Polymeric adsorbers (Andrew Cooper)
- D. Rechargeable metal hydrides
  - a. Alloys & intermetallics
  - b. Nanocrystalline
  - c. Complex


#### Carbon



Buckyballs Multi-Wall Single-Wall Nanotubes



Rice Univ, CNST



Heben & Dillon, NREL

#### **Carbon Problems, R&D Directions:**

Physisorption: ΔH<sub>ads</sub> too low, cryogenic

Chemisorption:  $\Delta H_{ads}$  too high, high  $T_{des}$ 

Find intermediate bonding strength:

Partial substitution (e.g., B, Li, etc.)

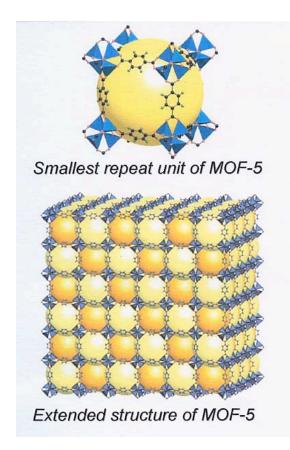
Metal insertion (e.g. Pt) for "spillover"

**See presentation by Anne Dillon (NREL)** 

## Zeolites



Complex aluminosilicates with specific pore sizes and high surface areas.


Exist in nature or can be engineered.

Well known as "molecular seives" and catalysts.

Science for capturing non-H<sub>2</sub> gases well known.

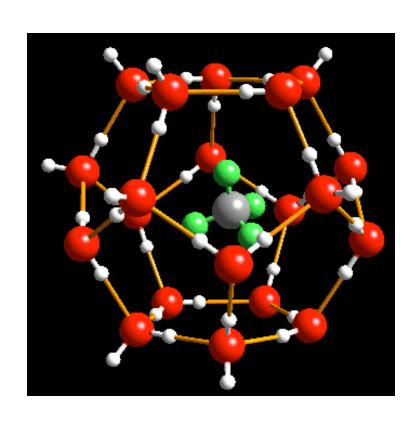
**International Zeolite Association** 

# Metal-Organic Frameworks (MOFs)



O.M. Yagi, University of Michigan

Typically ZnO structures bridged by benzene rings.


Highly versatile; hundreds of structural variations possible.

Very high surface areas and tunable cage sizes.

Need to increase  $\Delta H_{ads}$ .

See presentation by Joe Zhao, Texas A&M.

## **Clathrate Hydrates**



W.F. Kuhs, University of Göttingen

H-bonded H<sub>2</sub>O cage structures, often containing "guest" molecules like CH<sub>4</sub> and CO<sub>2</sub>.

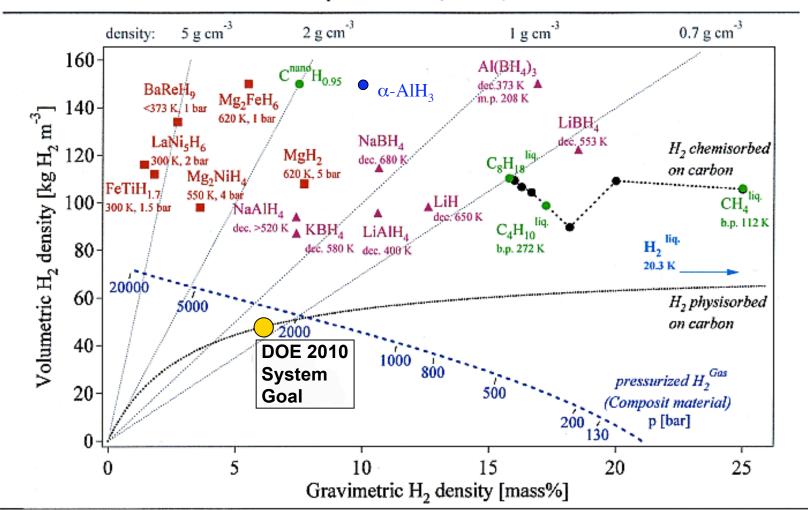
Cage size and structure can often be controlled by organic molecules (e.g., THF).

### SOME HYDROGEN STORAGE METHODS

#### 1. Gaseous hydrogen

- A. Steel tanks
- **B.** Composite tanks
- C. Cryogas
- D. Glass microspheres

#### 2. Liquid hydrogen


- A. Cryogenic
- B. NaBH<sub>4</sub> solutions
- C. Rechargeable organic liquids
- D. Anhydrous ammonia NH<sub>3</sub>

#### 3. Solid hydrogen

- A. Chemical hydrides (H<sub>2</sub>O-reactive)
  - a. Encapsulated NaH
  - b. LiH & MgH<sub>2</sub> slurries
  - c. CaH<sub>2</sub>, LiAlH<sub>4</sub>, etc
- **B.** Chemical hydrides (thermal)
  - a. Ammonia borane
  - b. Aluminum hydride
  - c. Misc. LE compounds
  - d. Nanomaterials (e.g., Si)
- C. Carbon & other HSA materials
  - a. Activated charcoals
  - b. Nanotubes
  - c. Graphite nanofibers
  - d. MOFs, Zeolites, etc.
  - e. Clathrate hydrates
- D. Rechargeable metal hydrides
  - a. Alloys & intermetallics
  - b. Nanocrystalline
  - c. Complex



#### Schlapbach & Züttel, Nature, 2001

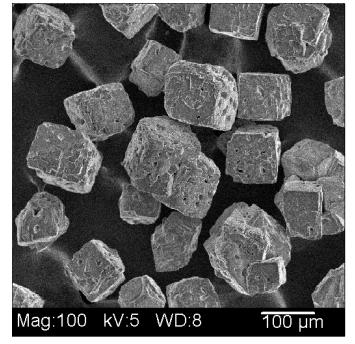


## **Chemical Hydride - Ammonia Borane**

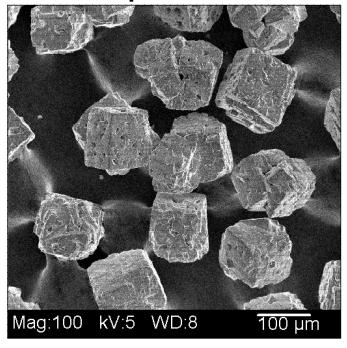
| <b>Decomposition Reaction</b>         | wt%H | T, °C |
|---------------------------------------|------|-------|
| $NH_4BH_4 \Rightarrow NH_3BH_3 + H_2$ | 6.1  | <25   |
| $NH_3BH_3 \Rightarrow NH_2BH_2 + H_2$ | 6.5  | <120  |
| $NH_2BH_2 \Rightarrow NHBH + H_2$     | 6.9  | >120  |
| $NHBH \Rightarrow BN + H_2$           | 7.3  | >500  |

- NH<sub>4</sub>BH<sub>4</sub> can be thermally decomposed in 4 steps with very high H<sub>2</sub> yields. Usually start with more stable NH<sub>3</sub>BH<sub>3</sub>.
- Crystal H-Density (NH<sub>3</sub>BH<sub>3</sub>→NHBH) ≈ 100 g/L
- Nesting in mesoporous "scaffolds" greatly increases decomposition kinetics.
- Catalysis and other approaches to get rapid kinetics <100°C.</li>
- Gaseous ammonia and boranes can be present in evolved H<sub>2</sub>.
- Reactions are not reversible. Offboard regeneration will be required.
- See presentation by Kevin Ott.

## Aluminum Hydride, Alane, AlH<sub>3</sub>


$$\alpha$$
-AIH<sub>3</sub>  $\longrightarrow$  AI + 3/2 H<sub>2</sub>

**H-capacity (g) = 10.1 wt%** 


H-capacity (v) =  $149 \text{ kg/m}^3$ 

 $\Delta H_{des} = 7.6 \text{ kJ/mol H}_2 \text{ (only 20\% of NaAlH}_4)$ 

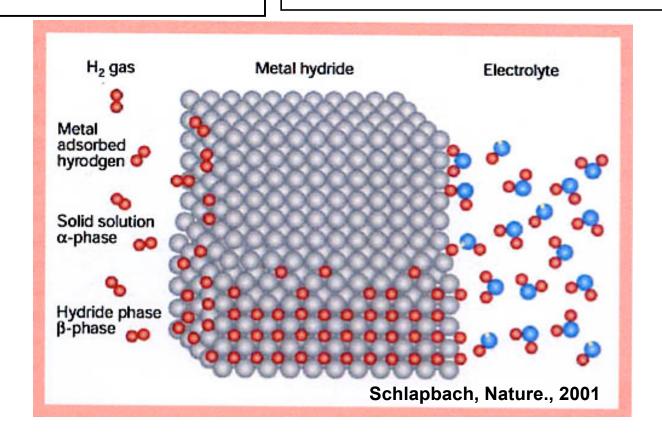
AlH<sub>3</sub>



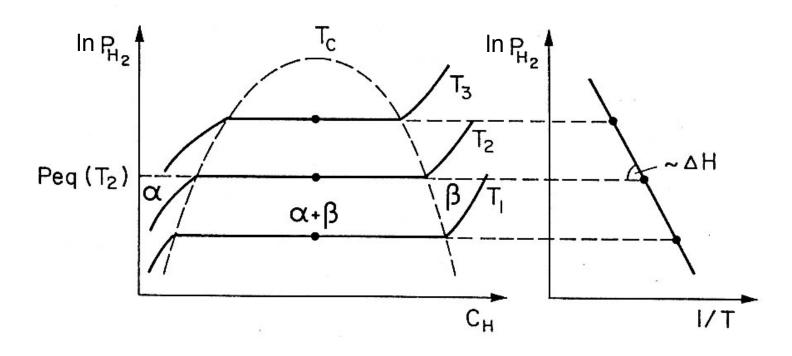
**Depleted Al** 



G. Sandrock et al, Appl. Phys. A, 80 (2005) 687-690.

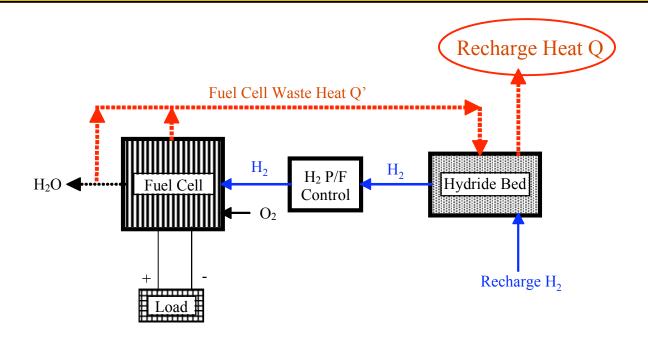

## Reversible Hydriding Reactions

#### Gas Phase:


$$M + \frac{x}{2}H_2 \Leftrightarrow MH_x + hea$$

#### **Electrochemical:**

$$M + xH_2O + x \in \Leftrightarrow MH_x + xOH^T$$



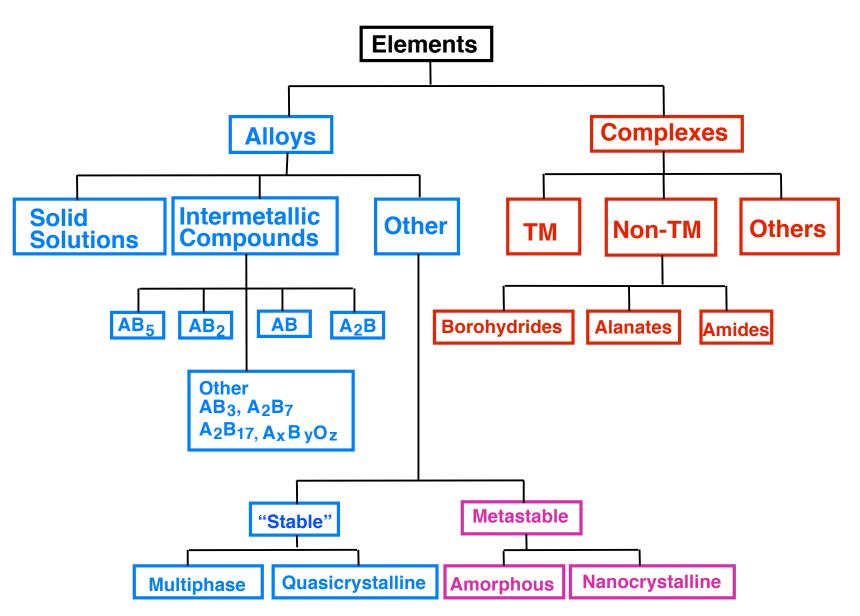

## Idealized Pressure-Composition Isotherms van't Hoff Plot and Equation



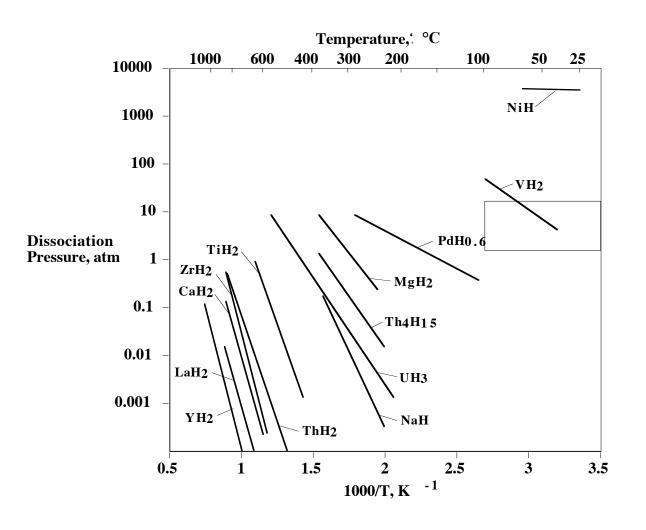
$$InP_{eq} = \frac{\Delta H}{RT} - \frac{\Delta S}{R}$$

## **Onboard Hydride Recharging - The Heat Problem!**




How much heat must be removed during recharging?

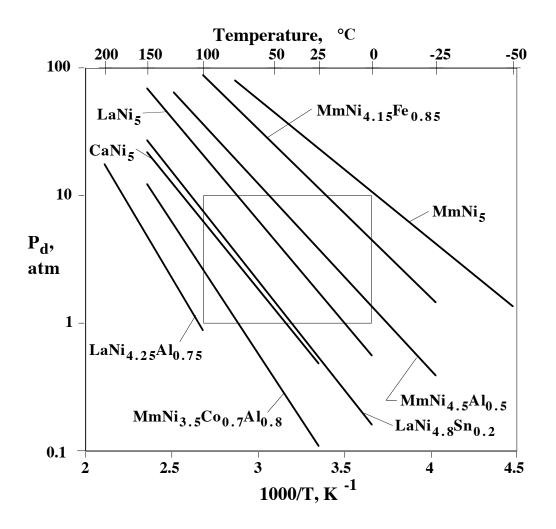
DOE 2010 Target =  $3 \min = 1.67 \text{ kg/min} (5 \text{ kg H}_2 \text{ tank})$ 


Take as example NaAlH<sub>4</sub> ( $\triangle H = -37 \text{ kJ/mol H}_2$ )

dQ/dt = 510 kW !! ⇒ Offboard recharging required?

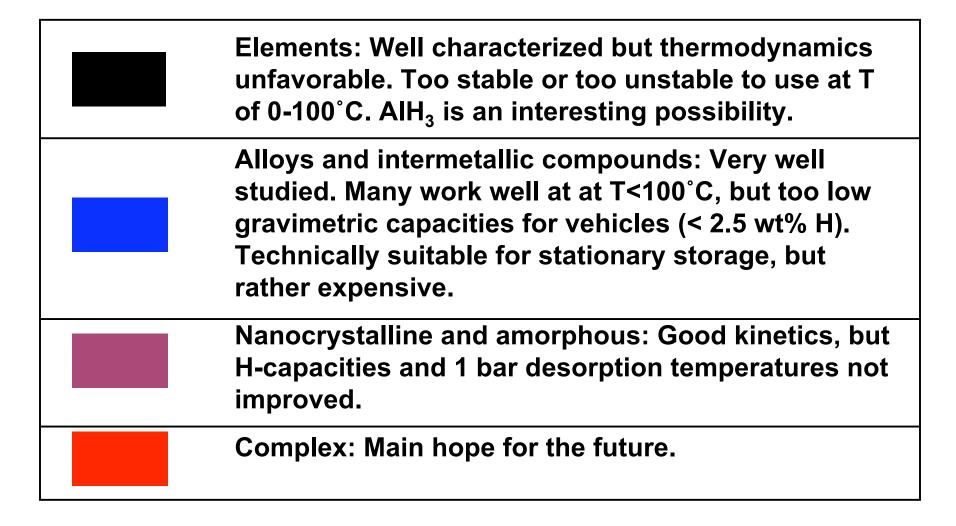
#### **Metal Hydride Family Tree**




# van't Hoff Lines (Desorption) for Elemental Hydrides



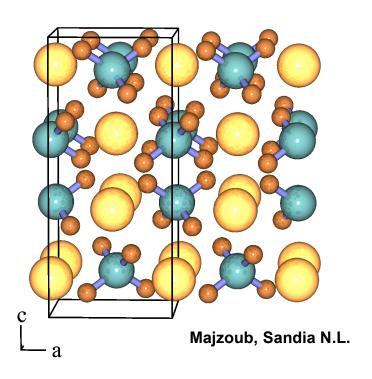
0-100°C 1-10 ATMA


Sandrock, 1997

# van't Hoff Lines (Desorption) for Representative AB<sub>5</sub> Hydrides



## **Status and Potential to Meet Targets**


(See Metal Hydride Family Tree)



#### **Example of Complex Hydride – Sodium Alanate**

$$NaAIH_4 \leftrightarrow 1/3Na_3AIH_6 + 2/3AI + H_2 \leftrightarrow NaH + AI + 3/2H_2$$
  
3.7 wt.%H<sub>2</sub> + 1.9 wt.%H<sub>2</sub> = 5.6 wt.%H<sub>2</sub>

Needs Ti (or other) "catalyst" for good kinetics and reversibility

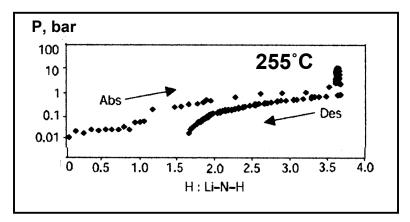


Mix of ionic and covalent bonding

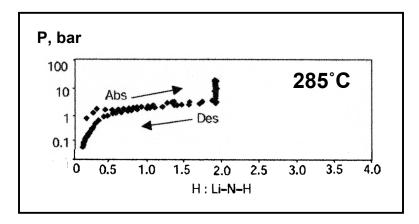
$$\mathbf{Na}^{+1} \begin{bmatrix} \mathbf{H} \\ \mathbf{H}: \mathbf{A1}: \mathbf{H} \\ \mathbf{H} \end{bmatrix}^{-1}$$

Bogdanovic' & Sandrock, MRS Bull., 2002

## **Borohydrides**


| Borohydride                       | wt% H | T <sub>des</sub> , °C |
|-----------------------------------|-------|-----------------------|
| LiBH <sub>4</sub>                 | 18.5  | 300                   |
| NaBH <sub>4</sub>                 | 10.6  | 350                   |
| KBH₄                              | 7.4   | 125                   |
| Be(BH <sub>4</sub> ) <sub>2</sub> | 20.8  | 125                   |
| AI(BH <sub>4</sub> ) <sub>3</sub> | 16.7  | 200                   |
| $Mg(BH_4)_2$                      | 14.9  | 320                   |
| Ca(BH <sub>4</sub> ) <sub>2</sub> | 11.6  | 260                   |

- 1. Borohydrides have high capacity potential.
- 2. Not inherently very reversible and often too stable.
- 3. Can produce diborane with  $H_2$ .
- 4. Benefit from "catalysis".
- 5. Significant efforts at enthalpy ( $\Delta H_{des}$ ) "destabilization".
- 6. Some progress on LiBH<sub>4</sub> and Mg(BH<sub>4</sub>)<sub>2</sub>, reversibility and destabilization.
- 7. See presentation of Ewa Ronnebro (SNL) and Jean-Philippe Soulie (lilka).


## Hydrogen Storage via Li-Nitrides, Imides and Amides

Chen et al, Nature, **420** (2002) 302

 $\text{Li}_3\text{N}+2\text{H}_2 \iff \text{Li}_2\text{NH}+\text{LiH}+\text{H}_2 \iff \text{LiNH}_2+2\text{LiH}$  (10.4 wt.% H)

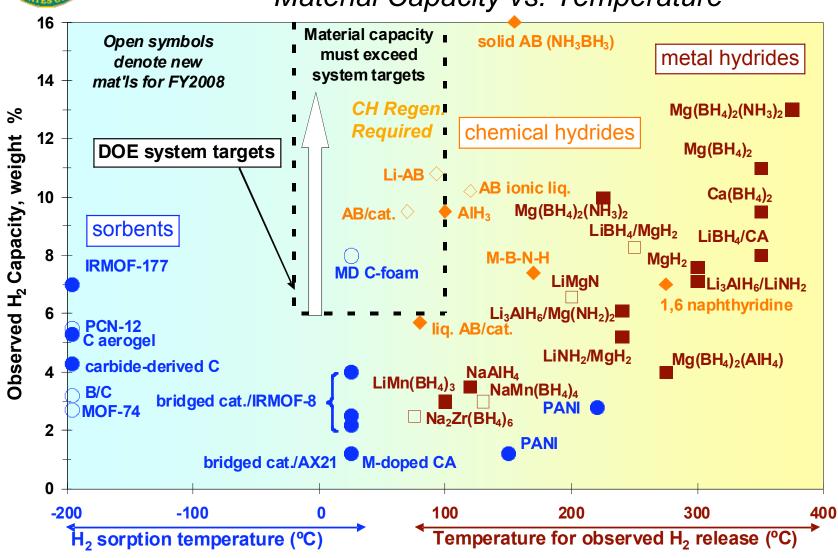


 $Li_2NH+H_2 \longrightarrow LiNH_2+LiH$ 6.5 wt.% H @  $\triangle H = -43$  kJ/mol H<sub>2</sub>



Extensive work in recent years (e.g., substitution, "catalysis", reaction path chemistry, ...)

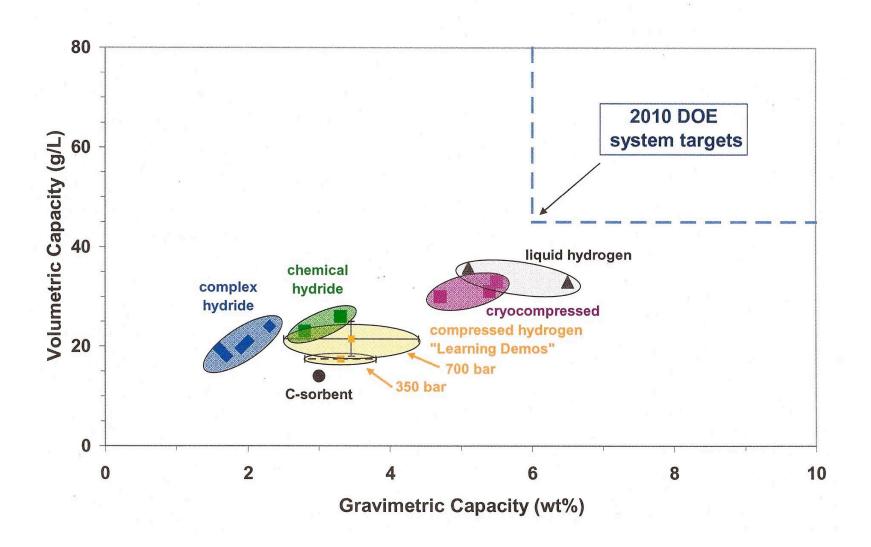
Only the right reaction (6.5 wt% potential) is easily reversible.


Partial Mg substitution lowers  $\Delta H_{des}$  and  $T_{des}$ .

Significant tendency for byproduct NH<sub>3</sub> formation.



## **Status**


#### Material Capacity vs. Temperature





## System Status - 2008

No technology meets targets



### SOME HYDROGEN STORAGE METHODS

## Possibilities for combinatorial materials science

#### 1. Gaseous hydrogen

- A. Steel tanks
- B. Composite tanks
- C. Cryogas
- D. Glass microspheres

#### 2. Liquid hydrogen

- A. Cryogenic
- B. NaBH<sub>4</sub> solutions
- C. Rechargeable organic liquids
- D. Anhydrous ammonia NH<sub>3</sub>

#### 3. Solid hydrogen

- A.Chemical hydrides (H<sub>2</sub>O-reactive)
  - a. Encapsulated NaH
  - b. LiH & MgH<sub>2</sub> slurries
  - c. CaH<sub>2</sub>, LiAlH<sub>4</sub>, etc
- B. Chemical hydrides (thermal)
  - a. Ammonia borane
  - b. Aluminum hydride
  - c. Misc. LE compounds
  - d. Nanomaterials (e.g., Si)
- C. Carbon & other HSA materials
  - a. Activated charcoals
  - b. Nanotubes
  - c. Graphite nanofibers
  - d. MOFs, Zeolites, etc.
  - e. Clathrate hydrates
  - f. Polymeric adsorbers
- D. Rechargeable metal hydrides
  - a. Alloys & intermetallics
  - b. Nanocrystalline
  - c. Complex